Migrastatin, a Novel 14-Membered Lactone from *Streptomyces* sp. MK929-43F1

Sir:

We have isolated migrastatin (Fig. 1), as an inhibitor of tumor cell migration, from a cultured broth of *Streptomyces* sp. MK929-43F1. In the preceding paper¹⁾, the taxonomy, fermentation, isolation and biological activities were reported. In this paper, we describe the physico-chemical properties and structure elucidation of migrastatin.

of migrastatin Physico-chemical properties summarized in Table 1. Migrastatin is readily soluble in methanol, acetone, ethyl acetate, chloroform and DMSO and practically insoluble in water and *n*-hexane. Migrastatin was isolated as a white powder with melting point of 54~55°C. The UV spectrum showed end absorption. Migrastatin gave positive color reaction with molybdophosphoric acid-sulfuric acid and 2,4-dinitrophenylhydrazine but negative with ninhydrin and Rydon-Smith. The molecular formula for migrastatin was established as C₂₇H₃₉NO₇ by HRFAB-MS, which was supported by the ¹H and ¹³C NMR spectra. The DEPT and HMQC spectra exhibited 27 resonances; three methyl, one methoxy, seven methylene, five methine, one oxygen bearing methine, five olefinic methine, one quaternary olefinic and four carbonyl carbons. The ¹H NMR spectrum exhibited the presence of two deuterium exchangeable protons other than the protons which were attributed to the carbons described above. These ¹H and ¹³C chemical shifts are listed in Table 2.

Fig. 1. Structure of migrastatin.

In the C1~C13 unit of the molecule, two substructures, CH=CH-CH₂ (C2~C4) and CH₂-CH=CH-CH-CH-CH-CH=C (C5~C11) were elucidated by the ¹H-¹H COSY spectrum. Additional informations from the HMBC spectrum; the long-range couplings from a methoxy group to C-8, from a hydroxy group to C-9 and from a methyl group at C-12 (H-23) to C-11, 12 and 13 suggested fully substituted partial structure, C-5~C-13. Another informations; the long-range couplings from the 13-H and the 2-H to a carbonyl carbon at C-1 ($\delta_{\rm C}$ 163.4) whose chemical shift was assignable to α,β -unsaturated ester carbonyl, suggested the bonds between C-13 and C-2 through -OCO-. The bond between C-4 and C-5 was not obvious by these experiments because of the signal overlapping. This was determined by a HOHAHA spectrum, which showed a spin system from the 3-H to 6-H and 7-H. Thus, the 14-membered lactone ring for the C1~C13 unit was established.

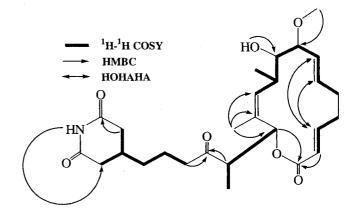
The side chain part was determined in the same manner as described above. The $^{1}\text{H-}^{1}\text{H}$ COSY spectrum exhibited two substructures, C(13)H–CH–CH₃ (C13~C14) and CH₂–CH₂–CH–(CH₂)₂ (C16~C20/25). In the HMBC spectrum, the long-range couplings from H-14 and H-16 to a carbonyl carbon at C-15 ($\delta_{\rm C}$ 210.8) whose chemical shift

Table 1. Physico-chemical properties of migrastatin.

Appearance	white powder
Nature	neutral
mp	54~55℃
$[\alpha]_D^{27}$	$+17.9^{\circ}(c3.18, \text{MeOH})$
Molecular formula	$C_{27}H_{39}NO_7$
FAB-MS (m/z)	490 (M+H) ⁺
	488 (M-H)
HRFAB-MS (m/z)	
Calcd	490.2805 (M+H) ⁺
Found	490.2775 (M+H) ⁺
UV in MeOH	end
IR λ max (KBr) cm ⁻¹	3207,2933,1718,1698,1260
R _f value ^a	0.51

^aSilica gel TLC (Merck Art. 1.05715, CHCl₃:MeOH=10:1)

Table 2. ¹³C and ¹H data for migrastatin in CDCl₃.


Position	δ _C (ppm)	δ _H (ppm)
1	163.4	
2	122.2	5.59 (1H, dd, 15.7, 1.5)
3	150.0	6.50 (1H, ddd, 15.7, 10.3, 3.6)
4	31.10	2.20~ 2.30 (1H, m)
		2.40~ 2.45 (1H, m)
, 5	31.14	2.20~ 2.30 (1H, m)
		2.40~ 2.45 (1H, m)
6	130.6	5.52 (1H, ddd, 15.5, 9.2, 4.6)
7	128.1	5.24 (1H, dd, 15.5, 4.7)
8	82.5	3.47 (1H,dd, 8.6, 4.7)
9	78.0	3.05 (1H, d, 8.6)
10	32.0	2.89~2.96 (1H, m)
11	133.1	5.65 (1H, dd, 10.6,1.5)
12	131.2	
13	77.0	5.10 (1H, d, 10.3)
14	51.2	2.94 (1H, dq, 10.3, 7.0)
15	210.8	
16	40.0	2.50 (2H, t, 7.0)
17	20.2	1.59~1.65 (2H, m)
18	34.2	1.32~1.38 (2H, m)
19	30.4	2.08~2.17 (1H, m)
20	37.7	2.20~ 2.30 (1H, m)
		2.65~ 2.75 (1H, m)
21	171.8	
22	13.4	0.96 (3H, d, 7.0)
23	26.0	1.88 (3H, d, 1.5)
24	13.4	1.12 (3H, d, 7.0)
25	37.7	2.20~ 2.30 (1H, m)
		2.65~ 2.75 (1H, m)
26	171.8	
8-OCH ₃	57.0	3.31 (3H, s)
NH		7.93 (1H, brs)
OH		2.82 (1H, brs)

Chemical shifts in ppm form TMS as internal standard

was characteristic to a ketone carbonyl, showed the connectivity between the two substructures mentioned above through –CO–. The two methylenes (C-20 and C-25) and two carbonyls (C-21 and C-26, $\delta_{\rm C}$ 171.8) in the terminal of the side chain are spectroscopically equivalent. Additionally, the long-range couplings from the H-20/25 to carbonyl carbons at C-21/26 and the remaining NH to C-20/25 suggested the existence of a symmetrical glutarimide structure. Key informations from $^1\text{H-}^1\text{H}$ COSY, HMBC, HOHAHA spectra are summarized in Fig. 2.

Geometries for the two olefins at C-2 and C-6 were revealed to be 2E and 6E by their large spin coupling,

Fig. 2. ¹H-¹H COSY, HMBC and HOHAHA correlation of migrastatin.

 $J_{2,3}$ =15.7 Hz and $J_{6,7}$ =15.5 Hz, respectively. A significant NOE between the 11-H and 23-H was observed in the NOESY spectrum indicating that the trisubstituted olefin was of Z stereochemistry. From the all above described results, the structure of migrastatin was determined as shown in Fig. 1.

The absolute stereochemistry of migrastatin is now in progress.

Acknowledgment

This study was partly supported by grants from the Ministry of Education, Science, Sports, and Culture of Japan. This work was also supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (08281105) from the Ministry of Education, Science, Culture and Sports.

KOICHI NAKAE[†]
YUYA YOSHIMOTO[†]
MINORU UEDA^{††}
TSUTOMU SAWA^{†††}
YOSHIKAZU TAKAHASHI^{†††}
HIROSHI NAGANAWA^{†††}
TOMIO TAKEUCHI^{†††}
MASAYA IMOTO^{†,*}

(Received May 19, 2000)

[†] Department of Applied Chemistry,

Department of Chemistry,
 Faculty of Science and Technology, Keio University,
 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

^{†††} Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

References

1) Nakae, K.; Y. Yoshimoto, T. Sawa, Y. Homma, M. Hamada, T. Takeuchi & M. Imoto: Migrastatin, a new

inhibitor of tumor cell migration from *Streptomyces* sp. MK929-43F1. Taxonomy, fermentation, isolation and biological activities. J. Antibiotics 53: 1130~1136, 2000